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Abstract

We aim to enable robot to learn object manipulation by imitation. Given external obser-
vations of demonstrations on object manipulations, we believe that two underlying problems
to address in learning by imitation is 1) segment a given demonstration into skills that can be
individually learned and reused, and 2) formulate the correct RL (Reinforcement Learning)
problem that only considers the relevant aspects of each skill so that the policy for each skill
can be effectively learned. Previous works made certain progress in this direction, but none
has taken private information into account. The public information is the information that
is available in the external observations of demonstration, and the private information is the
information that are only available to the agent that executes the actions, such as tactile
sensations. Our contribution is that we provide a method for the robot to automatically
segment the demonstration of object manipulations into multiple skills, and formulate the
correct RL problem for each skill, and automatically decide whether the private information
is an important aspect of each skill based on interaction with the world. Our experiment
shows that our robot learns to pick up a block, and stack it onto another block by imitating
an observed demonstration. The evaluation is based on 1) whether the demonstration is
reasonably segmented, 2) whether the correct RL problems are formulated, 3) and whether
a good policy is learned.

1 Introduction

1.1 Why Imitation Learning?

When a robot is presented with an unfamiliar object, the robot is not aware of what actions can
cause what changes to the state of the object. Learning by imitation is an effective way for a
robot to gain knowledge about possible useful actions on objects in its environment.

For a robot to learn to effectively manipulate an unfamiliar object to achieve a particular
task, there are two problems, a) how the robot knows what the task is: for people familiar
with programming, they can directly put in the corresponding criteria to define the task for the
robot, but it is not realistic for most of the consumers of commercial robots who are usually not
familiar with programming with robot, b) how the robot learns to achieve the task: it is difficult
for the robot to automatically learn to achieve the task in a short amount of time just based
on pure self-exploration. One natural way to inform the robot about a task is to show it how
an expert completes the task. The robot should be able to represent the desired manipulation
behavior in a way such that it can effectively understands ”what happened when”. And the
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representation could guide the robot to learn actions to imitate the behavior, thus reproducing
the same manipulation effects.

Given an observed behavior, usually formally defined as state variables describing the ob-
served environment and action variables describing the observed actions, the robot should be
able to learn a policy, which is a mapping between states and actions, such that it can select an
action to execute based on its current state.

1.2 RL Problem Formulation - MDP

RL methods are popular for policy learning, and the robot can improve its performance overtime
through interaction with the world, thus we use RL methods in our work. To learn a policy with
RL methods, we should first define a RL problem, usually formulated as an MDP (Markov Deci-
sion Process) with following components: the state space S, the action space A, and the reward
function R(s). We’ll elaborate on the importance of correctly defining these three components
in an MDP.

1.2.1 Importance of Reward Function R(s)

For a robot to learn to effectively manipulate an unfamiliar object by imitating other’s behavior,
it is important for the robot to understand what to imitate, i.e., the goal of the observed behavior.
For robotic experts, they can directly hand code the corresponding criteria into R(s) to define
the goal for the robot, but it is not realistic for most of the consumers of commercial robots to
do so.

Thus it is important for the robot to automatically capture the goal of an observed behavior
by defining the correct reward function. For example, if the goal of an observed behavior is to
reach and grasp a cup, then the reward function can be defined as -1 everywhere except for a
big positive reward when then cup is being grasped.

1.2.2 Importance of State, Action Space S,A

Think of the way we act in our daily lives, when we manipulate some objects of interest, we don’t
pay much attention to other objects in the environment. For example, if there are two blocks
and a cup on a table, when we are stacking the two blocks, we don’t really care about where the
cup is; on the other hand, when we try to put one of the block into the cup, we don’t care where
the other block is. This reflects that even we have access to a bunch of information, we always
abstract out the most important information relevant to our task by hand, and this is formally
referred as abstraction in machine learning. Abstraction is a key to select important aspects of
a skill, such that the skill is generalized to scenarios where the complete S,A change. With the
correct abstraction, the appropriate state and action space is defined for the RL problems.

1.2.3 Importance of Segmenting an Observed Behavior into Multiple MDPs

The observed behavior can underlie multiple policies, i.e., there are several skills involved in
the behavior. For example, picking up a block, and then stacking it onto another one are two
different skills. When the observed behavior contains multiple skills, the robot should be able
to automatically segment the behavior into multiple pieces, with each corresponding to a skill,
and formulate individual RL problem for each of them.
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The advantage of segmenting an observed behavior into a sequence of skills and learn the
policy for each skill is that: a) learned individual skills can be reused in other tasks; b) individual
RL problem can be formulated with skill specific state and action space, instead of the overall
state and action space.

1.2.4 Importance of Acknowledging Private Information

Given an externally observed behavior, private information such as tactile sensations are not
available to the robot. If human demonstrates to rotate a jar’s lid to open it, the observed
behavior will be the hand rotating together with the jar’s lid until it is open. With lack of
private information, the robot cannot decide whether the private information is important or
not by just observing the behavior. Once the robot understands the goal of the behavior, and
selects the correct state abstraction, i.e. the orientations of the hand and lid w.r.t the frame of the
jar’s body in this case, appropriate RL methods can be applied to learn a policy by temporarily
assuming that the private information does not matter. As the robot is just grasping the jar’s lid
without controlling the holding force, the robot could fail to learn a policy to reliably open the
jar’s lid. In our work, when the robot encounters failure at learning a good policy to reproduce
the observed behavior, it will propose to expand the state space in the originally formulated RL
problem to include the private information, i.e., tactile sensation, and expand the action space
to include the controller on holding force, then restart the learning based on the not-so-good
policy learned previously in the originally formulated RL problem.

1.3 Our Contribution

Given an observed behavior, it is important to segment it into multiple pieces (if there are
multiple skills involved), and formulate the correct RL problem for each piece such that RL
methods can be further applied to learn policies. Our contribution is two-fold:

• We provide a method to online select the appropriate abstraction such that 1) the correct
reference frame is selected, and 2) the relevant objects are selected.

• When private information is not available in the observed behavior, the robot is able to
decide whether the private information is important, and reformulate the RL problems if
needed.

Next, Sec 2 will discuss some related works, Sec 3 introduces notations used in this paper,
and then Sec 4, 5, 6, 7 explains the methods involved in our framework, and Sec 8 discuss our
experiment setup, and the evaluation results.

2 Related Work

2.1 Understanding Manipulation Behavior

A potentially useful manipulation behavior representation for artificial agents should satisfy
several criteria. As pointed out in [4], the representation needs to be based on sensory signals
and learnable by observation. From the point of view of learning by imitation, the representation
should also satisfy that (1) it is not redundant in the sense that it should not encode information
that exists only within certain observed behaviors, such as specific motion trajectories of human
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arm joints and objects; (2) it should be simple such that it can be easily interpreted as a roadmap
that guide an agent to act.

Previous works on human manipulation actions recognition have attempted to represent
manipulation behavior in a probabilistic manner. Human poses, human-object context, and
object-object context have been considered to solve the problem jointly as in [25]. Similarily
in works by Kjellstrom et al.[16], pre-defined hand-object features and manipulation features
are extracted, and the semantic manipulation action-object dependencies are learned based on
CRFs. Their representation of manipulation behavior is powerful in that they can recognize
manipulation actions as well as object categories. Although previous works are robust in ma-
nipulation action recognition when presented by various view points and even occlusions, those
representations of the behavior cannot be directly translated into any step by step guidance, or
a roadmap that an agent can follow for effective imitation.

Works by Aksoy’s group [4] revealed an effective way to represent manipulation behavior. By
observing different human demonstrations of the same manipulation behavior, they discovered
that the manipulator, i.e. hand, and objects movement trajectory may vary, but there are
certain moments that the spatial relations between the hand and objects are similar or identical
across all the demonstrations, and these moments are referred as decisive moments. They
introduced Semantic Event Chain (SEC) as a novel, generic representation of manipulation
behavior, where they encoded the spatial relations between the manipulator and objects only
at decisive moments. SEC describes object relations presented in 2D images, where ”touching”
is defined as the 2D regions of two objects are side by side, and ”overlapping” is defined as the
2D regions of two objects overlapping with each other. In our work, instead of describing object
positions in 2D terms, we describe an observed behavior with 3D poses of the manipulator and
objects in the workspace.

2.2 Learning by Imitation

There are different ways of recording demonstrations for a robot to imitate. Some works [14][28]
mounted sensors on human body, and recorded the joint angles during the demonstrations to
teach humanoid robot drumming and walking patterns. We choose to use an external sensor, a
Kinect mounted in front of the robot, to record the human demonstrations, since we don’t need
precise measurements on the motion or joint angles of the articulated human arm or hand, and
it costs much less overhead.

For both ways of recording demonstrations as introduced above, there exists a correspond-
ing issue. The corresponding issue is understood as the identification of a mapping from the
demonstrator to the robot that allows the transfer of information. For example, in the case of
robot learning to walk by observing human joint angles during demonstrations, before it can
imitate the walking pattern, the robot needs to know the mapping between the human joint
angles and its own joint angles. For more details on works that address the correspondence
issue, please refer to this survey[5]. In our case, the robot already knows the hand in the demon-
stration is correspondent to its grippers since only the hand and the grippers are the actors in
the manipulation actions.

In domains like learning biped walking, and dancing patterns, previous works learn robot
movements by imitating joint trajectories [14][28][15]. They mounted sensors on human body,
and recorded the joint angles during the demonstrations to teach humanoid robot drumming
and walking patterns.

While in the domain of learning object manipulations, where the robot needs to learn a
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manipulation task, directly imitating exact joints trajectories for manipulation tasks won’t gen-
eralize well. Two completely different sequences of joints trajectories can be performing the
same manipulation task. For example, when we pick up an object, we can approach it from
various angles and along various joint trajectories, but all these trajectories correspond the same
manipulation task. Thus what really matters in the domain of object manipulation learning is
to capture and imitate the important aspects of the behavior rather than imitating the quan-
titative joints trajectories. For example, the important aspects of picking up an object are the
hand needs to approach the object first, then grasp it to lift it up, no matter what the joints
trajectories are.

2.2.1 Policy Derivation Approaches

There are two core approaches for policy derivation from observed behavior: RL methods, and
direct mapping function learning. Kohl and Stone [20][19] parameterized a quadruped walk on
their Sony Aibo robot, and the robot effectively learned a fast walk based on a proposed policy
gradient reinforcement learning method. There have been some works that directly learn the
mapping from the state space to the action space. With discrete action space, the problem of
learning the mapping is essentially a classification problem. For example, Chernova et al. [7][9]
learns to navigate through corridors by observing the behavior generated by expert teleoperation.
In their work, the states are continuous variables describing the distances of the closets walls,
and the actions are discrete variables corresponding to pre-defined controllers that drives the
robot forward, to the left, to the right, and u-turn. The mapping from state to action is learned
based on GMM. Similar works have been focused on high-level primitive actions such as hand
gestures, for learning box and ball sorting tasks [31][8]. With continuous action space, the
problem of learning the mapping is then a regression problem. Grollman et al. [11] has applied
locally weighted projection regression to soccer skill learning task on an AIBO robot.

Among these two core approaches to policy derivation, RL approach is the only one that can
update the policy to potentially improve the behavior beyond the observed one. Furthermore,
with the option framework[34] that hierarchically combines multiple policies together, RL ap-
proach can deal with not only low level control, but also support high level planning. Thus we
are pursuing the RL approach as it is the most promising one.

2.2.2 Learning of MDP Components

Some previous works have been focused on learning the state space given the reward function(or
rewards received from the external environment). Given the reward function, Konidaris and
Barto[22][23] selects a state abstraction from a set of hypothesized ones based on value function
approximation errors. Li et al.[26] starts with a large state space, then compresses it with variable
removal or state aggregation, while it could be infeasibly difficult to learn a value function for
the beginning large state space. McCallum[27] provides an alternative approach to start with
empty state space, and then add in new state variables one at a time when it becomes evident
that they are necessary for learning the behavior, but requires a significant amount of data and
computation to determine which variable to introduce.

Some other works have been focused on learning the reward function given the state space
and action space. Reward function is a very important component in RL problem formulation,
since it underlies the goal (and maybe desired properties and constraints) of the behavior. Given
the state space and action space, state transition model, and observed behavior (as a sequence of
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state and action pairs), inverse RL methods aims at recovering the reward function. In Markov
decision processes, Ng[29] and Abbeel[2] learns the reward function such that the policy underlies
the observed behavior is optimal. In their car driving simulation, given observed behavior of
different ”driving styles”, their method was able to learn the reward functions such that each
reward function can lead to the optimal policy that generates behvaior qualitatively similar to
the observed ones. Kolter and Abbeel [21] extended the inverse RL paradigm to accept isolated
advice at different hierarchical levels of the control task, such that it is still feasible to learn
the reward function when it is non-trivial to provide the optimal behavior, such as navigating a
quadruped robot over extreme terrain.

Our work focus on automatically formulating RL problems for the skills observed in demon-
stration, thus learning all the components of the MDPs, and solving the RL problems result in
good policies that can reproduce the observed behavior. One of the important step made in
this direction is by Konidaris et al. [24], they provided an elegant approach for behavior seg-
mentation, and abstraction selection for formulating the RL problems, but their approach was
not readily applicable to the object manipulation domain, as discussed later in our experiment
section 8.4.1.

3 Notations

First of all, S is the overall state space, and it divides into the overall public state space Spublic
and the overall private state space Sprivate. In Spublic, each dimension is a public state variable
whose value can be externally observed, such as the x coordinate of an object center, and a
boolean state variable indicating whether the hand is open or not. In Sprivate, each dimension
is a private state variable whose value cannot be externally observed, such as tactile sensations
on the fingers.

The robot observes a sequence of states sampled at the frame rate,

O = (s0, s1, · · · , sfinal) (1)

where si ∈ Spublic. More specifically, si is a vector composed of the pose vectors of objects in
workspace, and the pose vector of hand,

si = [P o1
i , P o2

i , · · · , P h
i ]T

where P
oj
i = [loc

oj
i , ori

oj
i ] is the pose vector of the jth visible object at ith sampled frame, and

P h
i is the pose vector of the hand at ith sampled frame. All the pose vectors in the observations

are in the world frame, they can be transformed into any object frame or the hand frame given
the object or hand pose.

Robot action space A is composed by end-effector movements (translation and rotation in
3D), open and close gripper with commanded holding force. We formulate the movements of the
end-effector of our manipulator robot through a set of Dynamic Movement Primitives(DMPs),
as introduced by Schaal[32] and Ijspeert[13]. A DMP represents a parameterized nonlinear
dynamical systems which is able to encode both discrete (i.ie., point to point) and rhythmic
(periodic) trajectories. The action space in our work is composed by joint torques, whose values
are determined by a set of control variables in DMPs, and these control variables are the policy
parameters being updated during RL.

In the object manipulation domain, we assume that the relevant state variables of a skill
are relation variables among several reference frames, and the skill specific reward R(s) is 0
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everywhere except for a large positive reward when the relation variables are within some desired
region, as observed at the end of the observed behavior. For example, given observed behaviors
of a task which is to place a gripped block onto a marker lying on a table, we should be able to
conclude that the relevant states are the relative pose between the reference frame associated
with the bottom surface of the block, and the reference frame associated with the marker, and
the task specific reward is 0 everywhere except for a large positive reward when the relative
pose between those two reference frames is for example 0 in each dimension. This is a simple
instance of inverse reinforcement learning methods. These synthesized rewards are reasonable
since many tabletop object manipulations involve skills with its own ending goal. If the real
reward function is more complex than that, other inverse reinforcement learning methods [2]
can be applied to infer the reward function from the demonstration.

Demonstrations on tabletop object manipulations can involve multiple skills, for example,
grasp and pick up a cup, the series of actions can be segmented into three individual skills: first,
approach the cup; second, grasp the cup; third, lift the cup. Each skill is formally defined as
an option o, as introduced in [33]. An option includes three components: 1) an option policy
πo(s, a) which gives the probability of executing each action in each state in which the option
is defined; 2) an initiation set indicator function Io(s) which gives 1 for states where the option
can be executed and 0 elsewhere; 3) termination condition βo(s) which gives the probability of
option execution terminating in states where it is defined.

In our work, we aim to automatically select the appropriate state abstractionM = 〈Orel, oref 〉
such that the correct object reference oref ∈ {o0, o1, · · · , on}, and the relevant objects Orel are
selected. Specifically, given an abstraction M = 〈Orel, oref 〉, the complete state space is mapped
to an abstracted state space, S 7→ Sabs, where

Sabs = {P okoref |ok ∈ Orel}

where P oioj refers to pose of object oi relative to object oj , thus Sabs is composed by the poses
of relevant objects Orel relative to object oref .

To formulate the correct RL problem for each segmented skill, the correct state abstraction
should be selected, and the private action control variable should be considered when it is
important.

4 Method Overview

The workflow of our imitation learning method is as illustrated in Figure 1. The robot observes
human behavior through an RGB-D camera, e.g., Kinect sensor, and the imitation learning
problem is solved by finding the right sequence of RL problem formulations and learning the
optimal policy for each RL problem. Our methods consist of following steps: 1) segmenting
the observed behavior into pieces with identified relevant objects Orel and reference frame oref ;
2) formulate a RL problem for each segmented behavior, and learn the optimal policy for each
initially formulated RL problem; 3) reformulate RL problems based on criteria that evaluates
whether the imitation following the optimal policy is successful. More detail about our methods
are explained in following sections.
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Figure 1: Workflow overview. Input: a series of RGB-D frames that records an observed be-
havior, e.g., picking up a blue block and stack it onto a green block in the workspace. Tracked
Objects: 3D poses of both hand and objects are tracked. Trajectories: pose trajectories of
hand and objects in a world reference frame, e.g., tabletop reference frame. Pose variables are
x, y, z, qx, qy, qz, qw, where q refers to quaternion. Segmented Trajectories: hand and object
pose trajectories are segmented into K pieces, e.g. K = 3 in the block stacking example. Each
segmented behavior is described by pose trajectories of relevant objects in identified reference
frame. RL: for each segmented behavior, formulate a RL problem by defining the MDP com-
ponents 〈S,A, R〉, and learn the optimal policy πi for each RL problem. which leads to an
option oi : 〈Ii, πi, βi〉 with an initiation set Ii ⊆ S and termination condition βi : S 7→ [0, 1].
The ith RL problem is reformulated if P (βi(sT ) = 1)|πi) is below threshold α, where sT is
the final state when the trajectory generated by DMPs end. The RL reformulation strategy
is explained in sec 7. Imitation trajectories: once all the learned policies pass the criteria
P (βi(sT ) = 1)|πi) > α, the robot can imitate the observed behavior by following the set of
optimal policies sequentially. Note that the imitation trajectories are not generated by directly
imitating the observed trajectories, but generated by following the policies learned from RL
problems that are automatically formulated by the robot.

5 Behavior Segmentation

In this section, an observed behavior is automatically segmented in to pieces with simultaneously
identified state abstraction M = 〈Orel, oref 〉, i.e., relevant objects and reference frame.

Our method is based on the assumption that 1) the origin of the reference object oref is close
to the latent attractor of hand/end-effector trajectory, e.g., the center of a target object serves
as the attractor of a reaching trajectory; and 2) when an object oi is moving along with the
manipulator, the object is an relevant object, i.e. oi ∈ Orel. For example, a block that moves
along with the hand when being grasped is an relevant object; 3) we assume the hand is always
relevant, i.e., h ∈ Orel.

Our intuition is that an observed behavior can be segmented at time points where the
reference frame changes or relevant objects change. The changepoint detection algorithm [10]
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can be applied to find these time points and select the correct abstraction M , as explained in
following section.

5.1 Changepoint Detection Algorithm

Here is a recap on the statistical changepoint detection algorithm in a general regression setting.
Given observed data and a set of candidate models Q, we assume that the data are sequentially
generated by an instance of a single model, occasionally switching to a different model at cer-
tain points in time, called changepoints. The goal is to infer the number and positions of the
changepoints and select an appropriate model for each segment.

An efficient changepoint detection algorithm was introduced by Fearnhead and Liu [10] that
simultaneously find the MAP changepoints and select model for each segment. Observations are
data pairs (xt, yt) observed at times t ∈ 1, 2, · · · , T , and there exists a set of candidate models Q
with prior P (q) for each model q ∈ Q. The marginal probability of a segment length l is modeled
with probability mass function g(l) and cumulative mass function G(l) =

∑l
i=1 g(l). And a data

segment from time j + 1 to t can be fit using model q to obtain P (j, t, q), the probability of the
data segment conditioned on q. Functions g(l) and P (j, t, q) is either given as prior knowledge
or pre-learned based on some training data.

This results in a HMM where the hidden state at time t is the model qt and the observed data
is yt given xt, as shown in Figure 2. The transition from model qi to qj occurs with probability

T (qi, qj) = g(j − i− 1)p(qj)

The emission probability of an observed data segment starting at time i+ 1 and continuing
through j using model q is given by

P (yi+1 : yj |q) = P (i, j, q)(1−G(j − i− 1))

Figure 2: HMM for changepoint detection[24]. Transitions occur when the model changes.

An online Viterbi algorithm can be used to compute Pt(j, q), the probability of the change-
point previous to time t occurring at time j using model q (i.e., from time j + 1 to t the data is
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generated using model q) is

Pt(j, q) = (1−G(t− j − 1))P (i, j, q)p(q)PMAP
j (2)

where PMAP
j is the probability of the MAP changepoint at time j,

PMAP
j = max

i,q

Pj(i, q)g(j − i)
1−G(j − i− 1)

Thus at each time t, the algorithm computes Pt(i, q) for each model q and changepoint
time j < t (using PMAP

j ) and then computes and stores PMAP
t . As PMAP

t being recursively

calculated, the MAP changepoint positions and models are stored. When PMAP
T is calculated for

the complete observed data sequence, the MAP changepoint positions and models for generating
the observed data are identified as a result.

5.2 Simultaneous Behavior Segmentation and Abstraction Selection

We can use above changepoint detection algorithm to detect when the abstraction (i.e. q =
〈Orel, oref 〉) changes and select an appropriate abstraction for each segment. The set of candidate
abstractions Q is composed by all possible combinations of 〈Orel, oref 〉, with the assumption that
hand is always relevant, i.e., h ∈ Orel.

Formally, the probability of the behavior segment from time j + 1 to t conditioned on ab-
straction q = 〈Orel, oref 〉 is

P (j, t, q) = pref (t, oref )
∏

oi∈Orel

prel(j, t, oi) (3)

where n = t− j − 1. And pref (t, oref ) calculates how likely oref is the correct reference object,
based on the distance from the actor(hand in our case) to the object, formally

pref (t, oref ) = e
−n
∥∥∥locht −locoreft

∥∥∥
where locht , loc

oref
t are the 3D locations of the hand and the hypothesized reference object at

time t. And prel(j, t, oi) calculates how likely oi is a relevant objects, based on whether it is
along with hand, formally

prel(j, t, oi) =


1 oi = h

e
n(1− 1

1+e−100d
)

d ≤ dthresh
e
− n

1+e−100d else

where d =
∑t

k=j+1‖lochk−locoik ‖
n is the average differences between the displacements of the locations

of the hand and object oi from time j + 1 to t.
For the changepoint detection algorithm to work well, an appropriate model of expected

segment length and an appropriate model for fitting the data are required. Similarly to Konidaris
et al. [24], we assume a geometric distribution for skill lengths with parameter p, so that
g(l) = (1− p)l−1p and G(l) = 1− (1− p)l, and this provides a natural way to set p via k = 1/p,
the expected skill length.

Using the probability functions defined above, the changepoint detection algorithm can seg-
ments the observed behavior into multiple pieces with selected state abstraction, i.e., relevant
objects and reference frame.

10



6 Policy Learning

6.1 Initial RL Problem Formulation

For ith behavior segment, given the selected abstraction q = 〈Orel, oref 〉, i.e., relevant objects
and reference frame, we can initially formulate the RL problem to be solved as an MDP with
components 〈S,A, R〉,

S = {poioref |oi ∈ Orel} (4)

A = {apose(θ)|θ ∈ Θreachable} (5)

R : c(s, a) = cimm(a) + cter(sT ) (6)

where poioj = (xij , yij , zij , qxij , qyij , qzij , qwij) are location and quaternion pose variables of
object oi in object oj centered reference frame, apose(θ) are actions that bring Baxter’s end-
effector to specific poses θ following trajectories generated by DMPs, and Θreachable are all the
end-effector poses that the robot can reach to.

Since the robot doesn’t know whether the private information such hand holding force is
important or not in advance, thus by default it assumes the private information is not important
at first. If later there is enough evidence that the RL problem needs to be reformulated, then
the private action agripper, which controls the holding force λ of the robot gripper(λ = 0 for
opening gripper, λ > 0 for closing gripper with force λ),is added into the action space A in the
reformulation stage, as elaborated later in section 7.

The cost function ctotal is composed by immediate cost function cimm(a) and terminal cost
function cter(sT ),

cimm(a) = wT
immä (7)

cter(sT ) = wT
ter(sT − sobsT ) (8)

where cimm(a) penalizes large accelerations, and cter(sT ) penalizes large differences between
the terminal state sT at the end of the executions of actions, and the terminal state sobsT observed
at the end of the behavior to be imitated. Note that we also penalize gripper opening/closing
action with cost at 5. Thus the total cost of a trial is calculated as the sum of the immediate
cost and the terminal cost.

6.2 RL with DMP

We represent the movements of the end-effector of a robot through a set of Dynamic Movement
Primitives(DMPs), as introduced by Schaal [32] and Ijspeert[13]. Thus the actions apose are
executed through position control following the pose trajectories generated by a set of DMPs.

Just a quick recap on DMP, there are discrete DMPs(i.e., point to point) and rhythmic
DMPs(periodic), and here we are focused on discrete DMPs. The discrete DMP is formulated
as a point attractor system modulated by nonlinear terms such that it achieves a desired attractor
behavior, which is appropriate for object manipulation tasks.

We used a modified version of DMP formulation as proposed in [12],

τ ż = αz(βz(g − y)− z)− αzβz(g − y0)x+ αzβzf

τ ẏ = z
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these equations represent the dynamical system, where τ is a time constant, αz is damping
constant, and αzβz is spring constant. y, ẏ, ÿ can be interpreted as desired position, velocity,
and acceleration for a control system, and a controller would convert these variables into motor
commands.

The forcing term f is how we can adjust the landscape of the original point attractor repre-
sented by the damped spring model. And f is formulated as scaled linear combination of basis
function ψi(x) weighted by wi

f(x) =

∑N
i=1 ψi(x)wi∑N
i=1 ψi(x)

x

ψi(x) = exp(− 1

2σ2i
(x− ci)2)

where the weight vector is w = [w1, w2, · · · , wN ]T , σi and ci are constants that determine,
respectively, the width and centers of the basis functions and y0 is the initial state, i.e., y0 =
y(t = 0), and

τ ẋ = −αxx (9)

this equation is called the canonical system because it models the generic behavior of the dy-
namical system, a point attractor in our case and a limit cycle for rhythmic behavior. We can
regard x as a phase variable that replaces the explicit timing, and x can start at some arbitrary
initial state (typically 1).

As we can see, in the context of RL, assuming the basis functions ψi(x) and all the other
constants in DMPs are given, the action is parametrized by the weight vector W, which is
composed by concatenating all the weight vectors w for all the DMPs, e.g., we are using 7
DMPs for 7 DOFs of the robot end-effector. Thus essentially policy search methods can be
applied to learn the optimal policy parametrized by the weight vector W.

Theodorou et al. proposed Policy Improvement with Path Integrals(PI2)[36][35] that can
improve policy parametrized as a Dynamic Movement Primitive(DMP)[13]. PI2 transforms
policy improvements into an approximation problem of a path integral. The pseudocode of the
algorithm is as shown in Figure 3, they used some different notations for DMP elements in their
context, to clarify, the policy parameters θ in their algorithm is equivalently the weight vector
w used here in one DMP formulation, and action a in their algorithm corresponds to f used
here in DMP formulation. For more details, please refer to [36][35].

As a result of PI2, for ith initially formulated RL problem, we can learn the optimal policy
πi as parametrized by the learned weight vector w. We store the learned policy πi together with
initiation set Ii and termination condition βi as a learned option oi : 〈Ii, πi, βi〉,

βi(s) =

{
1 ifcter(s) < C

0 else

where C is a threshold on the total cost. Initiation set Ii is composed by the states that the
robot encountered that can lead to βi(sT ) = 1 following πi. We used C = 20 in our experiment.

7 RL Problem Reformulation

As a criteria evaluating whether the ith segmented behavior is successfully imitated, we use
P (βi(sT ) = 1)|πi), i.e., the probability of successfully reproduced the observed behavior following
policy πi, to decide whether initially formulated RL problems need to be reformulated.
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Figure 3: Pseudocode of PI2 algorithm [35]. In detail, qt = q(xt) is an arbitrary state-dependent
cost function, where xt denotes the state of the system. R is a positive semi-definite weight
matrix of the quadratic control cost, εt is the Gaussian noise vector, N is the length of one
roll-out, and τi = (xti , · · · ,xtN) is a sample path starting at state xti .

If P (βi(sT ) = 1)|πi) < α, where α is a pre-defined threshold for determining whether the
imitation is successful, then that indicates that 1)there are large accelerations during the action
execution, and 2)at the end of executions of actions following learned πi, the terminal state sT
is often far from the observed terminal state sobsT in the observed behavior to be imitated, then
the initially proposed RL problem needs to be reformulated to capture missing aspects of the
behavior such that a better policy can be learned, and the RL problem is reformulated until
P (βi(sT ) = 1)|πi) > α for all segmented behaviors.
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Our RL reformulation strategy is described in 1. To search for the correct RL problem
formulation for the ith segmented behavior, we first start with an initial RL problem formulation
based on the selected abstraction, as explained earlier in section 6.1. If the policy learned for
the initially formulated RL problem is not good enough to reproduce the observed reliably,
then we propose to reformulate the RL problem for the ith segmented behavior. We first look
at the likelihood of the observed data in the ith segment given all the possible abstractions,
calculated as in equation 2, then sort all the abstractions that give likelihood higher than a pre-
defined threshold αmodel and store them in Q. The start to reformulate the RL problem using
ranked abstractions in Q, if the first abstraction doesn’t work out, then try reformulating the RL
problem by including gripper action agripper in, which controls the holding force of the grippers; if
that doesn’t work out, then try the second abstraction, and so on, until the reformulation works
out. If unfortunately, all the abstractions in Q have been tested and failed, then the failure
of imitation could due to inappropriate RL problem formulation for earlier behavior segments,
thus proceed to reformulate the i− 1th segmented behavior.

Algorithm 1 RL Reformulation

procedure Searching Correct RL Problem Formulation
Given ith segmented behavior start from time ti + 1 to ti+1

Proposed an initial RL formulation 〈Si,Ai, Ri〉
Learn the optimal policy for initially formulated RL problem
while P (βi(sT ) = 1)|πi) < α do

Reformulate(i)
learn the optimal policy for reformulated RL problem

Store the learned option oi : 〈Ii, πi, βi〉

function Reformulate(i) . reformulate RL problem for the ith segment
global reformcurr (default false)
global reformprev (default false)
if reformprev then

Reformulate(i− 1)
reformprev = false

if !reformcurr then
calculate Pti+1(ti, q)∀q based on equation 2

Q = {q| Pti+1 (ti,q)

maxq Pti+1 (ti,q)
> αmodel}

sort q ∈ Q based on Pti+1(ti, q)
Ai′ = {apose, agripper}
M = {〈Si,Ai, Ri〉, 〈Si,Ai′, Ri〉|q ∈ Q} based on equations 4, 5, 6
reformcurr = true

if M 6= ∅ then
〈S,A, R〉 = pop(M)
Reformulate the ith RL problem to 〈S,A, R〉

else
reformcurr = false
reformprev = true
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8 Experiment

In our experiment, we show that by observing single human demonstration on stacking two blocks
together, as shown in Figure 5, the robot can automatically segment the observed behavior into
pieces, and formulate correct RL problems by recovering from initial failure of imitation due to
inappropriate initial RL problem formulation, and in the end, learn good policies such that the
observed behavior is successfully reproduced.

(a) (b)

Figure 4: (a)Experiment setup. (b)ROS Rviz view of point cloud messages from Kinect.

Our experiment was carried out on our physical robot, Baxter Research Robot [1], we used a
Kinect sensor mounted on the head of Baxter, as shown in Fig. 4(a). The Kinect sensor records
the RGB-D frames of the human demonstration and robot imitation trails. One example of the
point cloud view from the Kinect sensor is shown in Fig. 4(b) using ROS Rviz1. The Kinect
sensor is calibrated with the robot such that the transformation between the kinect camera
coordinate frame and the robot coordinate frame is known.

Next, we’ll discuss how the human behavior observed through Kinect is processed, and how
Baxter control its arms for action execution, and then the experiment results and discussion.

8.1 Perception

To extract the sequence of states 1 from the RGB-D video, we need to 1) locate the objects and
hand at the 1st frame, and 2) track the objects and hand, such that we can record the 3D poses
of objects and hand. The tracking results are as shown in Figure 5, and the detailed visual
processing is as elaborated in Appendix A.

8.2 Control

In our experiment, we use 7 DMPs to control the 7 DOFs of Baxter end-effector, i.e., the
3D position and the orientation expressed in quaternion, and an extra DMP for robot gripper
holding force. We share one canonical system 9 among all DMPs so that the canonical system

1ROS package: http://wiki.ros.org/rviz
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Figure 5: Upper row : observed behavior; Lower row : tracked objects and hand. From left to
right, the actions are 1)reaching to grasp blue block, 2)carrying blue block and stack it onto
green block, 3)retrieve hand from blocks. The full-length video is available at https://youtu.
be/mogAk8ndNek, and the tracking result is available at https://youtu.be/-hLooluR9zA.

provides the temporal coupling between all DOFs, while each dynamical system associated with
each DOF presents the desired attractor behavior.

For the control of the Baxter end-effector, we use 7 DMPs to generate a 3D pose trajectory
based on the policy parameters being learned, then inverse kinematics is first applied to get the
corresponding arm joints angle trajectory, then we can directly send the joints angle commands
to Baxter and the internal controllers 2 will take care of following the joints angle trajectory.

Based on the comparison between the original DMP formulation [32] and the biologically-
inspired DMP formulation [12] as explained in Appendix B, we use the latter in our work.

For more details on DMP, please refer to the technical report [40].

8.3 RL Methods

As explained earlier in Sec 6, we applied PI2 algorithm to learn our policy parameters. The
reason why we choose PI2 over another promising method PoWER [18][17] is as explained in
Appendix C.

Specifically, the policy parameters get updated for the first time after the first 10 trials, and
after that, the policy parameters get updated every other 5 trials. The maximum number of
updates is 5. And the policy is considered to be converged when the difference between the total
costs R(s, a)(equation 6) of consecutive updates is smaller than 3.

The policy parameters are initialized by learning the weight vectors of the 7 DMPs such that
those DMPs can generate trajectories that resemble the shape of the observed trajectory. For

2http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes
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the details on getting the initial policy parameters, please refer to Sec 2.2 in technical report
[40].

8.4 Results

8.4.1 Behavior Segmentation and Abstraction Selection

Given the blocks and hand poses extracted from the single human demonstration on stacking
two blocks, we applied our method as explained in Sec 5 to the pose trajectories, and the result
is as shown in Figure 6. Note that the position of the hand is plotted in the reference frame of
the blue block and green block, such that it is easier to interpret the meaning of the trajectory
for the reader.

Our method segment the observed behavior into three pieces: 1) the 1st piece corresponds to
hand reaching towards the blue block and end with a grasp pose; 2) the 2nd piece corresponds
to hand stacking the blue block onto the green block; 3) the 3rd piece corresponds to hand
retrieving from those blocks. For these three pieces, our method selects the abstraction in the
form of 〈Orel, oref 〉 correctly, 1) the 1st piece is associated with Orel being the hand, oref being
the blue block; 2) the 2nd piece is associated with Orel being the hand and the blue block, oref
being the green block; 3) the 3rd piece is associated with Orel being the hand, oref being the
blue block.

Figure 6: Original hand location trajectories in block0 (blue) and block1 (red) reference
frame. Our algorithm selects the abstraction in the form of 〈Orel, oref 〉 in sequence:
〈{h}, block0〉, 〈{h, block1}, block0〉, 〈{h}, block0〉.

While Konidaris’s method [24], when applied to the same pose trajectories, returned wrong
results as shown in Figure 7. Their method is based on the intuition that the observed behavior
should be segmented into pieces such that each piece has a different underlying policy, thus they
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Figure 7: Original hand location trajectories in block0 (blue) and block1 (red) reference frame.
Konidaris’s algorithm selects the abstraction in the form of 〈Orel, oref 〉 in sequence: 〈{h}, block1〉,
〈{h}, block1〉, 〈{h}, block1〉, 〈{h}, block1〉.

approximate the value function for each state encountered during a temporal segment of the
observed behavior, and divide the observed behavior into pieces when a single value function
cannot approximate the observed rewards well enough.

Their method segments the observed behavior into 4 pieces, with the first and the last piece
being similar to our result. But their method oversegments the ”stacking” trajectory into two
pieces, where the 1st piece is mostly the ”stacking” trajectory, and the 2nd piece is hand being
steady for a while due to slow motion of the hand in the observed human demonstration for that
particular time period, this is due to that these two pieces seem to have different underlying
policy, one being ”moving the hand”, the other being ”keeping the head steady”. In addition,
their method selects the wrong object-centered reference frame for the first segment, where the
hand is reaching towards the blue block. An analysis of the failure modes of their method is
provided in this technical report [38].

8.4.2 Imitation Results with Initial RL Problem Formulation

Given the segmented behavior and the state abstraction selected for each behavior segment, we
formulate an initial RL problem for each segment, following the rules as explained in equations
4, 5, 6.

Starting from the 1st behavior segment, the initial RL problem is formualted as: S = phoblue ,
A = {apose(θ)|θ ∈ Θreachable}, R : c(s, a) = cimm(a) + cter(p

hoblue
T ). Baxter first estimates

the initial policy based on the observation as explained in Sec 8.3, and then PI2 is applied to
learn the updates of the policy parameters such that the total cost R(s, a)(equation 6) can be
decreased. Once the policy is converged, we measure how likely the robot can reproduce the
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observed behavior, i.e., P (β1(sT ) = 1)|π1). If P (β1(sT ) = 1)|π1) > α, we claim that the robot
has successfully reproduced the 1st behavior segment, otherwise the robot needs to reformulate
the RL problem following the algorithm 1.

We use α = 0.8 in our experiment, and Baxter successfully learned to reach to the blue block
with a grasp pose, as show in video https://www.dropbox.com/s/lv685yx927nus4w/wrong_

a_rviz_speedup.mp4?dl=0. And the learning curve for the 1st behavior segment is as shown
by the blue line in Figure 8(a).

Then Baxter carried on to learn the policy for the 2nd behavior segment, following the
same learning process it did for the 1st behavior segment as explained above. The initial RL
problem is formulated as: S = {phogreen , poblueogreen}, A = {apose(θ)|θ ∈ Θreachable}, R : c(s, a) =

cimm(a) + cter(p
hogreen
T , p

oblueogreen
T ). When the policy converged, Baxter failed to reproduce the

observed behavior with P (β2(sT ) = 1)|π2) = 0. The learning curve is as shown by the red line
in Figure 8(a).

The failure is due to the fact that the private action agripper is not included in the action
sapce A in the initial RL problem formulation. To carry the blue block around, Baxter needs
to close its gripper first to grasp the blue block. Thus for the 2nd behavior segment, Baxter
failed to reproduce the observed behavior, as shown in video https://www.dropbox.com/s/

lv685yx927nus4w/wrong_a_rviz_speedup.mp4?dl=0.

8.4.3 Imitation Results with Reformulated RL Problem

Following the reformulation strategy 1 as discussed earlier, Baxter reformulated the RL problem
for the 2nd behavior segment by adding the private action agripper into the action space, i.e.,
A = {apose(θ), agripper|θ ∈ Θreachable}. Since the private action is not observed, we cannot
initialize the policy parameters for the DMP that generates the value trajectory of the gripper
holding force as we did for the DMPs that generate the pose trajectory of the end-effector, thus
we initialize the policy parameters associated with agripper as 0. And we initialize the policy
parameters associated with apose as the ones learned in the initial RL problem formulation.
Baxter ended up learning a good policy to reproduce the 2nd behavior segment, with P (β2(sT ) =
1)|π2) = 1, and the learning curve is as shown by the red line in Figure 8(b).

Then Baxter carried on to learn to reproduce the 3rd behavior segment, which is to retrieve its
end-effector from the blocks. The RL problem for the 3rd behavior segment is initially formulated
as: S = phoblue , A = {apose(θ)|θ ∈ Θreachable}, R : c(s, a) = cimm(a) + cter(p

hoblue
T ). When

the policy converged, Baxter succeeded to reproduce the observed behavior with P (β3(sT ) =
1)|π3) = 1. The learning curve is as shown by the orange line in Figure 8(b).

Note that the final policy π2 for the 2nd behavior segment has the robot close its gripper
around the beginning, before the arm starts to move, such that the robot can grasp the blue
block. One interesting thing is that π2 happens to have the robot open its gripper around the
end, thus releasing the blue block onto the green block, so when learning to reproduce the 3rd
behavior segment, the robot doesn’t need to worry about the private action, and the initial RL
problem formulation for the 3rd behavior segment is good enough.

Thus in the end, based on simultaneous behavior segmentation and abstraction selection, and
automatic RL problem reformulation when needed, Baxter was able to reproduce the observed
stacking behavior successfully, as shown in video https://www.dropbox.com/s/oc0v93k7e8craty/
stack_rviz_speedup.mp4?dl=0.
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(a) (b)

Figure 8: Total cost accumulated over number of trials on learning different behavior segments.
Blue: 1st behavior segment - end-effector reaches towards the blue block with a grasp pose;
Red : 2nd behavior segment - carry the blue block to stack it onto the green block; Red : 3rd
behavior segment - retrieve the end-effector from the blocks. (a) Learning curve based on
initial RL problem formulation. Blue: For the learning of the 1st behavior segment, policy π1 is
converged after 10 trials, and P (β1(sT ) = 1)|π1) = 1 thus no need for RL problem reformulation;
Red : for the learning of the 2nd behavior segment, policy π2 is converged after 10 trials, while
P (β2(sT ) = 1)|π2) = 0, thus the robot needs to reformulate the initially proposed RL problem
until it can successfully reproduce the 2nd behavior segment, before it starts to learn to reproduce
the 3rd behaviro segment. (b) Learning curve based on reformulated RL problem. Blue: The
learning for the 1st behavior segment is completed with the initial RL problem formulation as
in (a), thus this is the same cost trace be presented in (a). Red : For the learning of the 2nd
behavior segment given the reformulated RL problem, the policy is converged after 25 trials,
the total cost of the 2nd behavior segment gets down to around 15, and the accumulated cost
across the 1st and the 2nd behavior segment gets down to around 17, which is much less than
the cost in (a). And P (β2(sT ) = 1)|π2) = 1, thus no need for further RL problem reformulation.
Orange: For the learning of the 3rd behavior segment, the policy is converged after 10 trials,
and P (β2(sT ) = 1)|π2) = 1, thus there is no need for RL problem reformulation.

9 Discussions

We showed that our method can segment an observed behavior into appropriate pieces and select
the correct state abstraction for each piece, while Konidaris’s method [24] failed to segment the
observed behavior into reasonable pieces and select the correct state abstraction for each piece.
We argue that our method is more tailored to deal with observed behavior that involves object
manipulation, while Konidairs’s method is more tailored to deal with observed behavior that
involves navigation in an environment.

Given single observed behavior on stacking two blocks, we demonstrate that our method can
successfully reproduce the stacking behavior on a physical robot. But the robot doesn’t fully
understand the general ”stacking” concept from a single observed behavior, it only learns to
stack two blocks with the relative pose between those two blocks being approximately the same
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with the one that was observed.
For the robot to take the learning target for imitation as learning to stack two blocks in a more

general sense instead of learning to stack two blocks with a specific relative pose between those
blocks, one of the suggested ways is to provide multiple demonstrations on stacking two blocks
with varying relative poses. As discussed in [3], when multiple demonstrations are provided,
the robot will be able to analyze what are the desired end-effects, i.e., the learning target of
imitation, and conclude that the relative pose between those blocks do not need to be exact
same as the one observed, but the blue block should be sitting on the green block.

10 Conclusion

We presented a general framework to learn policies for object manipulation by imitating an
observed behavior. We show that based on our framework, given an observed behavior, we can
segment the behavior into multiple skills if needed, and select the appropriate state abstraction
such that 1) the relevant objects are identified, and 2) correct object-centred reference frame is
selected. And our physical robot can learn policies that reproduce the observed behavior given
RL problems formulated based on the segmented behavior and selected state abstractions.

Furthermore, we show that when private information is not available in the observed behav-
ior, the robot is able to decide whether the private information is important, and reformulate
the RL problems if needed. Specifically, in our experiment, our physical robot Baxter was able
to recognize that the gripper action is important for carrying the block around and stacking it
onto another block, and then it learns to 1) grasp the block with a proper holding force after its
end-effector is at a grasp pose w.r.t the block, and 2) release the block by opening its gripper
when the stacking is complete so that it can retrieve its end-effector.
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Appendix A Visual Processing

It is assumed that the human demonstration and robot imitations involve manipulations on a
stable tabletop. And only the objects that are on the table will be taken into account. Thus we
just need to identify the tabletop, the objects on the table, and the hand at the starting frame,
then track the objects and the hand. All the vision processing is built on PCL [30] and OpenCV
library [6].

Given the starting frame of the RGB-D video, the tabletop is first identified. A 3D plane
is fitted to the fetched 3D point cloud data, and with the assumption that the dominant plane
correspond to the tabletop, the tabeltop plane is easily detected. After clustering all the points
that belong to the plane, the largest cluster is identified as the tabletop. The tabletop reference
frame is localized as shown in Figure 9.

After identifying the tabletop, the 3D points above the tabletop are clustered into groups
based on euclidean distance. Each cluster correspond to one object. To get the length and the
width of a block, we first project the 3D points of the block cluster onto the localized tabletop
plane, and then we find a rotated rectangle of the minimum area enclosing the projected 2D
points, the length and the width of the rectangle is directly the length and the width of the
block. The block height is calculated as the average of the heights of the three highest 3D points
belong to the block cluster. The block pose is defined by placing the origin at the geometric
center of the block model, and orienting the x-axis along the width of the block, orienting the
y-axis along the length of the block, and orienting the z-axis along the height of the block, as
shown in Figure 9.

(a) (b)

Figure 9: (a)Point cloud input from Kinect. (b)localized tabletop and blocks.

Note that the human hand is not easy to localize and track since it is not rigid and it is hard
to obtain a good model, thus we focus our attention on marked cylinders (Figure 5) to simplify
the problem. The left and right fingers represent the hand. In the experiments, the fingers are
identified and tracked by color thresholding. The left and right finger 3D locations are the 3D
locations of the centroids of the localized left and right finger cylinders. The human hand pose
is defined by orienting the z-axis along the average of the axes of the cylinders, and orienting
the y-axis along the vector pointing from the left finger centroid to the right finger centroid, and
x-axis can be calculated from the cross product of the other two axes. The origin of the human
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hand pose is placed at a 3D point resulting from shifting the average 3D centroid of the two
fingers along the z-axis away from the tabletop by around 10cm, as shown in Figure 5.

For robot imitations, the gripper pose in the robot body frame is directly available through
the robot state publisher, and the robot knows (1)the transformation between the robot body
frame and the camera coordinate frame(because of calibration), (2)the transformation between
the camera coordinate frame and the tabletop coordinate frame, the robot can calculate the
gripper pose in the tabletop coordinate frame.

The block is tracked using particle filters based on the geometry of the block. For more
details, please refer to the technical report [39].

Appendix B Original DMP Formulation V.S. Biologically-inspired
DMP Formulation

Before getting to know the difference between the original DMP formulation [32] and the
biologically-inspired DMP formulation [12], it is helpful to first go through a thorough introduc-
tion on DMP, available at [40].

As pointed out by Hoffmann et al. [12], the original DMP formulation has some problematic
shortcomings:

• If the goal g is close to the start point y0, a small change in g may lead to huge accelerations
that break the limits of the robot. As illustrated in the middle plot of trajectory of
quaternion y value in Figure 11.

• If changing g across the zero point, the whole movement inverts. As illustrated in the
middle left and right plot of trajectory of quaternion x, z value in Figure 11.

The trajectory generated based on the modified DMP formulation is as shown in Figure 12. As
we can see, both shortcomings as mentioned above are overcame.

We expect the biologically-inspired DMP formulation to suit our needs better, i.e., it adapts
to new starting gripper pose better than the original DMP formulation, and this is confirmed in
the experiments on both physical and simulated robots. In both experiments, the robot is first
given a sample trajectory for reaching to grasp a block at a specific position, and then the block
is placed at several new locations(and orientations) for the robot to reach, and we’ll evaluate
the performance of the DMP formulation based on how many new block poses can it adapt to
such that the robot can successfully reach to the block with a grasp pose.

Our physical experiment is carried on our Baxter robot, the block is placed at 5 different
locations(and orientation) for Baxter to reach. The experiment is as recorded in online videos
https://youtu.be/YpIpBgUuVqQ and https://youtu.be/P0XvoZtDZeU. As we can see, based
on the original DMP formulation, Baxter was only able to adapt its movements to 2 new starting
poses; while based on the biologically-inspired DMP formulation, Baxter was able to adapt its
movements to 3 new starting poses.

To conduct the experiment in a more systematic and efficient way, we test the performance of
these two DMP formulations in simulation(Gazebo), and sample a set of block poses by drawing
grids on location and orientations as the test set, and the test sample size is 490, far more than
5 in the physical experiment. The performance is as shown in Figure 10. Based on the original
DMP formulation, Baxter only successfully adapt to 29 new block poses out of 490 test poses,
achieving performance rate at 5.92%. On the other hand, based on the biologically-inspired
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(a) (b)

Figure 10: (a)Performance based on original DMP formulation. (b)Performance based on
biologically-inspired DMP formulation. The x-axis and y-axis refers to the position of the block
center w.r.t Baxter body frame. The block is placed on a table in front of Baxter, thus the z
locations of different test block poses are the same, so we are not showing it in the plots. The
arrows indicates how the dominant axis of the block is oriented in Baxter body frame. Red
arrow : fail to reach to block at a grasp pose; Green arrow : succeed to reach to block at a grasp
pose.

DMP formulation, Baxter can successfully adapt to 164 new block poses out of 490 test poses,
achieving a much higher performance rate at 33.47%, which is a reasonable performance given
that only one sample trajectory is provided for a specific block pose.

To learn to adapt end-effector trajectory for more generalized target poses from a machine
learning perspective, please refer to [37]. In our work, we are relying on reinforcement learning
to automatically adjust the end-effector trajectory for new block poses that are difficult to adapt
to purely based on DMP formulation.

Appendix C PoWER V.S. PI2

We are going compare two promising RL algorithms(policy search methods): Policy Learning
by Weighting Exploration with the Returns(PoWER)[18][17], and Policy Improvement with
Path Integrals(PI2)[36][35] . Both algorithms can improve policy parametrized as a Dynamic
Movement Primitive(DMP)[13].

PoWER is an EM-inspired probabilistic policy improvement method. The PoWER algo-
rithm is as shown in Figure 13. The policy parameters θ is equivalently the weight vector w in
DMP formulation as mentioned in sec 6, and action a corresponds to f in DMP formulation in
sec 6. For more details about the algorithm, please refer to [18][17]. PI2 transforms policy im-
provements into an approximation problem of a path integral. The pseudocode of the algorithm
is as shown in Figure 3. For more details about the algorithm, please refer to [36][35].
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Figure 11: Trajectory of each dimension in gripper pose based on original DMP formulation
[32]. From left to right, top down are trajectory of: x, y, z, qx, qy, qz, qw which represent robot’s
end-effector position and orientation respectively. Blue: Trajectory generated with the observed
start pose; Red : Trajectory generated with a new start pose.

C.1 Experiment Setup

To compare the performance of these two algorithms, we focus on a reaching task in 1D. The
reaching trajectory is generated by a DMP, and we prefer a trajectory with small accelera-
tions(since we would like for Baxter to move gracefully), thus we will apply both policy search
methods and choose the one that converges faster to policy parameters that generates small
accelerations.

Specifically, the starting point of the trajectory is y0 = 0, and the goal is g = 1. The
duration of the DMP is 1 second. 10 basis functions psii(x) (Gaussian kernels) are used, with
centers ci equally spaced in time(which corresponds to an exponential spacing in x), and variance
σi = 1

2(ci − ci−1). And other constants are αz = 25, βz = αz/4, αx = αz/3.
With the settings introduced above, the trajectory generated by the damped spring model

without the forcing term f is as shown in Figure 14(a) in red.
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Figure 12: Trajectory of each dimension in gripper pose based on biologically-inspired DMP
formulation [12]. From left to right, top down are trajectory of: x, y, z, qx, qy, qz, qw which
represent robot’s end-effector position and orientation respectively. Blue: Trajectory generated
with the observed start pose; Red : Trajectory generated with a new start pose.

C.2 Rules of Reward(or Cost) Function Design

As pointed out in [35], the immediate rewards in PoWER need to behave like an improper
probability, that is, be strictly positive and integrate to a constant numberthis property can
make the design of suitable cost functions more complicated. Usually exponential function is
used.

For PI2, in contrast, in the immediate cost function as shown in Figure 3, qt = q(xt) can
be arbitrary state-dependent cost function, and R needs to be positive semi-definite. Thus it is
generally easier to design cost function for PI2 compared to PoWER.

With the rules above in mind, and to learn a policy that generates small acceleration, we
design the immediate reward(or cost) function to be

PoWER : rt =
1

n
e−0.01|ÿt| (10)

PI2 : rt = qt =
1

n
(1− e−0.01|ÿt|) (R = 0) (11)

where ÿ is the acceleration, and n is the length of the trajectory(we say a trajectory (y0, y1, · · · , yn−1)
has length n).
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Figure 13: PoWER algorithm[18].

Note that for PoWER, rt is immediate reward that we would like to maximize, on the other
hand, for PI2, rt is immediate cost that we would like to minimize, and that explains why there
is an additional ”1-” in the rt for PI2.

C.3 Results

We apply PoWER and PI2 with the immediate reward(or cost) function 10, 11 designated for
each method. In both cases, the initial policy parameters w = 0, which corresponds to pure
damped spring model.

For each algorithm, we ran 505 roll-outs, and we evaluate the policy every time the policy
parameters w are updated. The score of a given policy is evaluated as

S(w) =
n−1∑
t=0

e−0.01|ÿt| (12)

where (ÿ0, ÿ1, · · · , ÿn−1) is the acceleration profile generated by policy arametrized by w at the
evaluation time.

The score of the policy improves as the policy gets updated through roll-outs, as shown in
Figure 14(b), both algorithms start with the same initial policy evaluated as 0.9234, and after
505 roll-outs, PoWER ended up with a final policy evaluated as 0.9526, while PI2 ended up
with a final policy evaluated higher at 0.9614.

As shown in Figure 14(a), the trajectory generated by the final policy learned by PoWER
generate is steeper than the one generated by the final policy learned by PI2, which also indicates
that PI2 ended up with a better policy that generates smaller acceleration.

C.4 Decision on Using PI2

In the experiment of reaching task, PI2 performs better than PoWER in that it learns a final
policy that generates smaller acceleration.

PI2 also offers the option to include the goal pose parameters into the policy paramerization,
so the robot can learn not only the shape of the end-effector trajectory for manipulation tasks,
but also the goal pose for manipulation tasks to deal with object location uncertainty due to
perception noise, as shown shown in our Baxter experiment discussed in online presentation [41].
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(a) (b)

Figure 14: (a)Red : reaching trajectory (goal g=1) generated by damped spring model without
forcing term f ; Blue: reaching trajectory generated with policy learned by PoWER after 505
roll-outs;Green: reaching trajectory generated with policy learned by PI2 after 505 roll-outs.
(b)Blue: score of policy updated by PoWER;Green: score of policy updated by PI2.

Since most of the end-effector trajectories of Baxter that we are going to deal with are similar
to reaching, our experiment shows that PI2 performs better than PoWER in learning a DMP
for reaching, and it is generally easier to design cost function for PI2 compared to PoWER, plus
that PI2 has the ability to incorporate learning of goal pose parameters, thus we conclude that
PI2 suits us better than PoWER.
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