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Abstract—Intensity inhomogeneity, also known as "bias field"
in MR images, mainly arises from imperfection in RF profiles,
and it harms the performance of many image analysis algorithms.
Traditional Segmentation based bias field correction methods is
constrained by its low intensity based segmentation accuracy. To
improve segmentation accuracy, we propose to integrate rich-
feature segmentation in bias field estimation. A Laplacian regu-
larization scheme is also designed to encourage the smoothness
of estimated bias field. We use synthetic data from BrainWeb
[1] and augmented them with artificial bias field. Experiment on
the dataset shows that our method provides more robust and
accurate segmentation result, which results in better bias field
estimation.

I. INTRODUCTION

Intensity nonuniformities, also known as the bias field in
magnetic resonance imaging (MRI), arise from various factors
such as imperfections in the radiofrequency (RF) pulse profile;
nonuniform flip angles caused by an inhomogeneous transmit
field; nonuniform reception sensitivity; RF penetration effects
dependent upon the electromagnetic parameters of the object;
wave behavior when the object size is equal to or more
than one-half the wavelength of electromagnetic radiation and
finally, gradient eddy currents related to the coupling between
the object and gradient coils [2]. Such bias field manifests as a
slowly varying signal intensity variation across tissue regions
that should be uniform, as shown in Fig. 1. Human eyes are
robust to such intensity inhomogeneity, thus medical experts
can perform analysis tasks correctly. However, many intensity
based image analysis algorithms are very sensitive to such
intensity variation; thus correction of bias field is of great
importance for accurate image analysis results.

Various methods have been proposed to address this issue,
including prospective methods [3][4][5], where bias field is
corrected during imaging, and retrospective ones, where bias
field is estimated from images. Retrospective methods are
more general in application as they do not rely on specific
MR scanners and are able to remove patient induced inhomo-
geneity. Segmentation based method is one of the important
categories in retrospective methods.

However, most existing segmentation based methods only
rely on image intensities or simple statistics referred from
intensities [6][7][8][9]. Other potentially useful information,
such as geometric shape, texture are ignored. The state of

(a) Image corrupted by
bias field

(b) Estimated bias field (c) Corrected image

Figure 1. Bias field example

the art segmentation techniques developed in computer vision
are deployed to obtain better segmentation results. In this
project, we investigated different features for supervised based
segmentations, and integrated the segmentation algorithm in
bias field correction.

Specifically, our project includes the following parts

1) Replication: We will first reproduce existing work on
segmentaion based bias field correction, as proposed by
Chen et al. [9], as well as rich-feature segmentation
method developed by Hoiem et al. [10].

2) Extension: After replication, we will integrate rich-
feature segmentation technique into our bias filed correc-
tion framework to see if better segmentation techniques
can lead to improvement in bias field correction.

The hypothesis we base our plan on are:

• Existing segmentation based bias field correction, can
lead to approximate 15% improvement in segmentation
accuracy comparing to direct segmentation on bias cor-
rupted images, measured by the percentage of correctly
classified voxels, as reported by Ahmed et al. [11]

• The rich feature tissue segmentation provides a more
accurate segmentation than fuzzy c-means based seg-
mentation methods. The quality of segmentation will be
evaluated as the pixel-wise label accuracy, which can
be measured against ground truth (human labeled or
provided by synthetic data). We expect the segmentation
accuracy to be 30% higher than fuzzy c-means [12].

• Integrating improved segmentation method with bias field
correction will lead to higher segmentation accuracy
compared with existing work[9] we replicate. We expect
our performance to be improved by 30%.



II. RELATED WORK

A. Segmentation Based Bias Field Correction

Among various retrospective methods, segmentation based
methods have received much attention as they incorporate
anatomy information, such as tissue type, into correction
process. For example, maximum-likelihood (ML) or maximum
a posteriori probability (MAP) criterion are applied to estimate
image intensity probability distributions by parametric models,
where bias field is modeled as a Gaussian mixture model
as in [13][14]. Fuzzy c-means based segmentation is also
insensitively studied as it assigns partial membership to voxels,
which is consistent with partial volume effect in MR images.
Standard fuzzy c-means objective function is modified in var-
ious ways to incorporate bias field effect [15][11][16]. Other
methods based on non-parametric models are also proposed
as in [17][18], using maxshift or meanshift clustering.

All these methods rely on image intensity only for segmen-
tation, while over the past few decades, image segmentation
has been an active area in computer vision, where numerous
methods have been proposed that rely on more complicated
features extracted from image instead of simple pixel intensity.

B. Image Segmentation

Image segmentation is the process of partitioning a digital
image into multiple segments. The goal of segmentation is
to simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze. It
has long been investigated in the field of image processing and
computer vision. Depending on whether prior information is
provided, image segmentation can be categorized into unsu-
pervised segmentation and supervised segmentation. Unsuper-
vised segmentation clusters pixels based on their similarities
in specific aspects (features). Examples of the specific aspects
being used in computer vision community are color of a pixel,
or richer features such as texture and shapes. Felzenszwalb
[19] et al. proposed a graph-based algorithm to segment an
image into regions. They start with a graph with each node
corresponding to each pixel, and each pixel is connected to
its neighbors by edges. Then they iteratively prune the edges
if two connected components are dissimilar. The final graph
with separated connected components correspond to separate
regions in the segmentation result. Their work presented good
segmentation results that align with the visual boundaries, but
an image can be oversegmented in a sense that each segment
does not correspond to a semantic entity, such as an object.

If we want to get semantic level segmentation, such as
object segmentation, then prior knowledge on the object could
be utilized for better segmentation. Supervised segmentation
groups pixels into regions such that each region gets assigned
to a specific pre-trained semantic label. These methods typ-
ically start with oversegmentation results of an image, and
then learn a prior on the appearance for each semantic label,
so that they can estimate the posterior probability of assigning
a specific label to one segment based on the appearance of the
segment. Hoiem et al. [10] learned the appearance model for
some 3D geometric labels, such as "horizontal" and "vertical".
Their method segments a given image into several geometric

classes. The features that they used are simple and several 3D
geometric features designed specifically for their task. In the
case that hand crafted features are powerful enough, we can
deploy deep learning [20] algorithm to automatically generate
a hierarchy of useful features. Farabet et al. [20] used deep
learning for generating a set of features in the task of scene
labeling. The drawback of this line of work is the requirement
of a huge amount of training data, which is hard to get due
to the human efforts needed on labeling.

In this project we will investigate more robust segmenta-
tion methods for better bias field correction, as well as the
corresponding regularization schemes to validate the above
hypothesis.

III. TECHNICAL APPROACH

In this project, we plan to integrate rich feature tissue
segmentation into the workflow of bias field correction, thus
validating the hypothesis presented previously. Therefore, ex-
isting works that we plan to replicate are two-fold: 1) rich
feature tissue segmentation; 2) segmentation based bias field
correction.

A. Rich Feature Tissue Segmentation

We aim to segment a given MRI image into regions that
correspond to 3 tissue classes, e.g. white matter, gray matter,
and fluid. Appearance based features can be extracted to model
each class. Integrating different features into a segmentation
process is not a trivial task. Different features ask for different
spatial support. Some are small-scale features like color or
texture. Some are large-scale features like shape. How to
provide the supporting area greatly affects the robustness and
accuracy of a segmentation algorithm. Inspired by the work
of Hoiem et al. [10] scene labeling, we proposed to follow
Hoiem’s multi-level segmentation pipeline to segment tissues
in MRI images.

As shown in Fig. 2, our proposed tissue labeling has 4 parts:
1) superpixel generation; 2) multiple hypothesis generation;
3) labeling. And then we will introduce how we trained the
appearance models and the features being used.

1) Superpixel Generation: We directly apply the segmen-
tation methods by Felzenszwalb [19] to get a set of over seg-
mented superpixels. As shown in Fig. 2, the oversegmentation
method also works with images with bias field. The goal of
the tissue segmentation is to label each superpixel as one of
the pre-defined tissue classes, with the hope that all the pixels
within one superpixel should belong to the same tissue class.

2) Multiple Hypothesis Generation: By changing the
thresholds in the segmentation methods [19], we can have
different oversegmentation results. It is intractable to evaluate
every possible oversegmentation result and find the one that
best segments the image into the pre-learned classes. Thus we
first over segmented the image into very small

s (typically around 400 superpixels for an image in our
dataset), and then grouped the superpixels of the oversegmen-
tation into bigger regions based on the grouping likelihood
P (yi = yj ||xi−xj |), where yi, yj are the labels for superpixel
i and j, and xi, xj are their features. The likelihood function is



(a) Input Image (b) Over Segmentation (c) Multiple level Segments Hypothe-
sis

(d) Final Segmentation Result

Figure 2. Illustration figures for different steps in our proposed segmentation framework.

learned in our training stage, as explained later. And the target
number of the final regions can vary, thus we can get different
groupings of superpixels, and each grouping is referred as one
of our hypothesis.

3) Labeling: For each hypotheses, we assume that each
region belongs to the same tissue class, meaning all the
superpixels within that region should be assigned to the same
tissue label. Because of multiple hypothesis, each superpixel
will be a member of several different regions from different
hypothesis. The superpixel label confidence Eq. (1) is mea-
sured by a weighted sum of the label likelihoods of the regions
that contain it, and the weights depend on the homogeneity
likelihood of the regions [10]:

C(yi = v|x) =
nh∑
j

P (yi = v|x, hji)P (hji|x) (1)

where yi is the superpixel label, and v is one of the possible
labels, and x is the image, nh is the total number of hypothesis,
and hji is the regions that contains the ith superpixel for the
jth hypothesis, and yj is the tissue label for the region hji. The
label likelihood function of the regions, and the homogeneity
likelihood function of the regions are learned in our training
stage, as explained below.

Training In the training stage, for each training image, we
generate multiple hypothesis. And for each hypothesis, we
label the region as one of the pre-defined tissue class if the re-
gion corresponds well to one tissue class, or label the region as
"mixed" if the region contains multiple tissue classes. Features
are extracted within each region, and the features being used
are as shown in Fig. 3. Details about features extractions are
explained later. The grouping likelihood of two superpixels
are learned based on the parent-child relations between the
regions and superpixels. The label likelihood function of a
region given the image data within that region is learned in
a one versus rest fashion. And the homogeneity likelihood
function of a region is learned by classifying homogeneously
labeled (i.e. label as just one of the tissue classes) vs "mixed"
labeled. All the likelihood functions can be estimated using
logistic regression version of Adaboost [21], or using other
classifiers such as SVM [22]. In our case, we used the online
available matlab codes developed based on Adaboost [21].

Features As shown in Fig. 3, we have several types of
features that we can extract within each region. We chose this

set of features since they can help recognize the tissue type
as explained below.

Feature Description
Intensity
I1: T1 intensity
Texture
X1: LM filters: mean absolute response (15 filters)
X2: LM filters: histogram of maximum responses (15 bins)
Location
L1: normalized x and y, mean
L2: relative location to center point.
L3: relative distance to center point
Shape
S1: number of pixels
S2: normalized area in image
S3: ratio of width by height

Figure 3. Features to extract

Intensity: Different MRI image types (T1 weighted, T2
weighted, etc.) have different tissue contrast, and one single
MRI volume may not be sufficient to separate all tissue types.
For example, it has been reported that and T2-weighted images
was more sensitive to bone density variation compared to other
MRI image types; calculated fat image using Dixon method
has strong contrast of fat with other tissue yet is not capable
of separating other tissue types [23]. Most existing bias field
uses single phase image (mainly T1 only) [24], thus it may be
useful to study bias field correction using multi-phase images,
utilizing characteristics of different MRI volume types. Here
we represent the intensity using two intensity channels: T1,
and T2, and calculate their mean (I1) and histograms (I2).

Texture: To explore whether texture gives us any cues for
the tissue class, we extracted texture features and include them
in the training stage. We apply a subset of the filter banks
by Leung and Malik [25]. The texture is represented by the
absolute filter response of each filter (X1) and the histogram
of maximum responses over pixels within a segment (X2).

Location: Since MRI images using the same coil are mostly
aligned together, the location is a very strong cue of what the
tissue type is. The locations are represented by the normalized
pixel locations of the tissue type: the mean of the locations



(L1), and also the 10th and 90th percentile of the pixel position
of a region in the image (L2).

Shape: The shape and extension of the region is another
cue that we can utilize. We represent the extension of the
region by the number of superpixels (S1), and the shape
is roughly represented by the normalized area in the image
(S2). Depending on the results, we might incorporate more
discriminative features for shape later.

B. Segmentation Based Bias Field Correction

The joint segmentation and bias field method proposed by
Chen et al. [9] formulate the optimization problem the as

J(b, u) =

c∑
i=1

n∑
k=1

umik‖xk − bk − vi‖2

s.t.
c∑
i=1

uik = 1,∀k

0 ≤ uik ≤ 1,∀k, i (2)

where xk, bk are log transformed image data and bias field
at voxel k, uik is the fuzzy membership of voxel k belongs
to tissue type i, ci is the prototype vector of tissue class i and
m controls the fuzzy degree. An iterative low pass filtering
is applied to the estimated b after each iteration to guarantee
smoothness.

This algorithm is computational expensive as an iterative
3D filtering is required at each algorithm iteration. Also, low
pass filtering does not have a clear meaning in optimality nor
do the authors specify which low pass filter is used in the
paper.

To overcome this problem, instead of applying post pro-
cessing step, we incorporate the constraint of smoothness into
our optimization problem directly. This results in a Laplacian
regularized problem

J(b, u) =

c∑
i=1

n∑
k=1

umik‖xk − bk − vi‖2 + λ∇b

s.t.
c∑
i=1

uik = 1,∀k

0 ≤ uik ≤ 1,∀k, i (3)

In our attempt to solve this problem, we find that the seg-
mentation error term and Laplacian regularization term are of
different scales, as bias field usually have a unit mean while
MRI voxel values can be very large. Experimental results show
that though the value of objective function continue decreasing
during iterations, regularization term is actually increasing.
Even when we increase the weight of regularization term, the
value of regularization term drops down yet the increasing
trend is not reversed.

Therefore, we resort to post processing techniques inspired
by the Laplacian regularization above — Laplacian regularized
least square fitting as in Eq. (4). That is we first solve the
unregularized problem and get a residual image. Then we
perform Laplacian regularized least square fitting (which is
equivalent to cubic B-spline smoothing) to the residual image
and get the estimated smooth bias field.

f̂ = arg min
1

n

n∑
i=1

|yi − f(ti)|2 + β

∫
|f (m)(t)|2dt (4)

Furthermore, we notice that although log transform is a
necessary step to decouple multiplicative bias field and true
MRI signal, it is not a linear operation and will distort the
contrast of original image. Such contrast distortion will effect
the segmentation algorithm as it relies heavily on contrast be-
tween different tissue types. Therefore, we replace Euclidean
distance with a Gaussian distance on log transformed data,
i.e D(x, y) = 1 − exp(−‖x−y‖

2

σ2 ) to recover original image
contrast.

To conclude, our algorithm operates as follows
1) Evaluate membership:

uik =

c∑
j=1

(
D(xk − bk, vi)
D(xk − bk, vj)

) −1
m−1

2) Update centroid:

v∗i =

n∑
k=1

umik(1−D(xk − bk, vi)(xk − bk)
n∑
k=1

umik(1−D(xk − bk, vi))

3) Calculate bias field:
b∗k =xk −

c∑
i=1

umik(1−D(xk − bk, vi))(xk − vi)
c∑
i=1

umik(1−D(xk − bk, vi))


4) Regularize bias field using B-spline smoothing
5) If the change of the updated centroid is smaller than

a given threshold, terminate the algorithm and return
results, else go back to step 1)

C. Integrate Segmentation into Bias Field Correction

Given the segmentation results in part A, bias field can be
estimated based on the assumption that same tissue type have
uniform intensity. We propose two strategies to incorporate
the rich features based segmentation into bias field correction,
corresponding to the non-iterative and iterative cases.

Non-iterative Case When segmentation is invariant to
intensity change, bias field will have little impact on segmen-
tation results. Thus we purely rely on the segmentation results
to generate a bias free image, i.e. the fuzzy membership of
pixel for different tissue types are fixed. Given the label of
each voxel uik and the prototype of each voxel ci (which can
be obtained from expert knowledge or supervised based tissue
labeling), the voxel intensity zk bias free image will be

zk =

c∑
i=1

uikci (5)

with this bias free image, we can easily estimate bias field as

b = X/Z (6)



(a) T1 image corrupted
by 80% bias field and
histogram

(b) Corrected T1 results
and histogram

(c) Ground truth T1 and
histogram

Figure 4. IV-A1 T1 example.

where X is original image and Z is bias free image constructed
by Eq. (6). However, the bias field estimation is an inverse
problem and ill-posed. Therefore we apply the following
regularized version, as proposed in [26]:

b̂ = arg min
1

2
‖X− Zb‖2 + λ

2
‖Rb‖22 (7)

where R is the finite differencing matrix to ensure the smooth-
ness of estimated bias field. Following the algorithm proposed
in [26], this problem can be solved efficiently using variable
splitting and Augmented Lagrangian(AL) methods.

Iterative Case In this case, segmentation and bias correc-
tion are performed jointly for an optimal solution. To do this,
we defined the following objective function

J(b, u) =

c∑
i=1

n∑
k=1

umik‖xk − bk − vi‖2 +R(b)

s.t.
c∑
i=1

uik = 1∀k

0 ≤ uik ≤ 1,∀k, i (8)

where b, u, c has the same meaning as in Eq. (2) Similar with
Eq. (3), a regularization item R(b) is introduced to enforce
the smooth constraints on bias field. Implementation details
on R(b) will be discussed in the experiment section IV.

We started with rich feature based segmentation, a bias field
is estimated using Eq. (8) and the bias corrected image is fed
back into the segmentation algorithm to update uik. Thus we
update the estimated bias field and segmentation iteratively util
certain terminating condition is met. We used thresholds on the
absolute differences of the variables between each iteration for
the terminating condition.

IV. EXPERIMENT

Our experiment consists of four parts: datasets, the evalua-
tion of our replicated bias correction methods, the evaluation
of our replicated rich-feature segmentation methods, and the
evaluation of our segmentation methods integrated with our
bias correction methods.

A. Datasets

We used synthetic data downloaded from BrainWeb [1].
Two types of synthetic data are involved for tests:

(a) T2 image corrupted
by 80% bias field and
histogram

(b) Corrected T2 results
and histogram

(c) Ground truth T2 and
histogram

Figure 5. IV-A1 T2 example.

(a) Corrupted image (b) Corrected image (c) Estimated Bias Field

Figure 6. Dataset IV-A2 Artificial bias field applied and result.

1) T1-T2 Dataset: 217× 181× 181 T1-weighted and T2-
weighted images with bias field are included. The true bias
field generated from real MRI scanners is provided on the
website, thus gives the ground truth for bias field estimation.
Specifically, the bias filed is at a strength of 80%. No ground
truth labels of tissue classes are provided, thus this dataset is
only used to provide some qualitative result.

2) T1 Dataset with tissue label: T1-weighted images simu-
lated from 20 brains anatomical model are included. The sim-
ulation images are bias free. Both hard tissue labels and soft
classification results are provided, thus we used this dataset for
segmentation evaluations. In addition, we augmented artificial
bias field on this dataset for evaluations on our bias field
correction method.

In our experiment, those clean images from the dataset
is corrupted by artificial bias field which is generate using
Prof. Fessler’s tool box [27]. We use four different pattern of
artificial bias field, as shown in Fig. 9

B. Fuzzy c-means based bias field correction

Three tissue types within brain region are considered: white
matter, gray matter and fluid. We tested our replications on
dataset IV-A1, and the NRMSE (normalized root of mean
square error) of the estimated bias field is 0.38. As shown
in Fig. 4, the intensity histogram of the corrected T1 image
is very similar to the intensity histogram of the ground truth
image. We also show similar performance on T2 images in
Fig. 5. These results validate that our replication is successful.

We also tested our replications on IV-A2, with images
augmented by artificial bias field from Prof. Fessler’s image
reconstruction toolbox [27]. Parameter settings are the same
with those in the tests on IV-A1. An example result is shown



(a) Ground truth labels (b) White matter segmentation

(c) Gray matter segmentation (d) Fluid segmentation

Figure 7. Before bias correction. Red: white matter; Greed: gray metter;
Yellow: fluid.

in Fig. 6. When the image is corrupted by a strong bias
field, fuzzy c-means based segmentation without bias field
correction suffers a lot as shown in Fig. 7. After we applied our
bias field correction methods, the segmentation results of the
corrected image is much better as shown in Fig. 8. Before the
bias field correction, the average accuracy of fuzzy c-means
segmentation is only 22%; after the bias field correction based
on our replications, the accuracy is 31%.

C. Rich-feature segmentation

To evaluate the robustness and accuracy of our rich feature
tissue segmentation framework, we tested our algorithm on
T1-weighted synthetic data in IV-A2. Artificial bias field is
included using Prof. Fessler’s tool box [27]. We used 50 clean
image and corrupted them with 4 patterns of bias field, which
composed to our training set. We then used 200 different clean
images and corrupted them in the same way, which composed
to our testing set. Given the ground truth labels of synthetic
images, we evaluated the performance by averaging the label
accuracy of each pixel. We compared our algorithm with fuzzy
c-means method (FCM) and fuzzy c-means with bias field
estimation (FCM-B).

The experiment results are shown in Fig. 12. An instance in
our test set is also shown in Fig. 10. The results demonstrate
that our proposed rich-feature segmentation dramatically out-
performs fuzzy c-means segmentation (by 51.1%), and also
fuzzy c-means with bias field estimation (by 41.8%). The
results fit our second hypothesis. It can be seen from the result
that Fuzzy c-means method is quite sensitive to bias field,
while our approach provide similar performance on both clean
images and biased images.

(a) Ground truth labels (b) White matter segmentation

(c) Gray matter segmentation (d) Fluid segmentation

Figure 8. After bias correction. Red: white matter; Greed: gray metter;
Yellow: fluid.

To better evaluate our segmentation method. We carried
out some intensive analysis on feature selection and classifier
robustness. We firstly did feature ablation study to analyze
the importance of each type of features in our framework.
As shown in Fig. 13, if we delete only one type of features,
the performance won’t drop to much. This result indicates
that our method is robust to noise or bias in only one type
of features. We also test the performance by using only one
type of features. It turns out the texture is the most important
feature in our case, while shape can be a weak feature when
used alone.

In our experiment, we use 4 kinds of bias patterns as shown
in Fig. 9. A general concern about supervised classification,
which is used in our approach, is the robustness of classifier
on different datasets. To evaluate this, we perform a cross
testing on different bias patterns, as shown in Fig. 11. We train
one classifier on images with one specific bias pattern, then
test its performance on the other bias pattern. The classifiers
will always perform the best on the pattern they are trained
on, which is the case for most supervised learning algorithm.
However, the performance is still tolerable and much better
than the baseline method when they are tested on unfamiliar
patterns. We also found that if the classifier is trained on clean
images, they will be sensitive to biased images, because they
tend to believe that the same tissue share the same intensity.

D. Integrate rich-feature segmentation with bias field correc-
tion

Our main approach is to completely trust the rich feature
segmentation result. Thus in the iteration of bias field cor-
rection, tissue labels are fixed on rich feature segmentation



Figure 9. Four kinds of patterns.

labels. Another approach is to do rich feature segmentation
and bias field correction recursively. In each iteration, the
output of bias field correction will be labeled with rich feature
segmentation, then the labels are used in next bias field
correction iteration. However, in our experiments, we noticed
that bias field correction is not gauranteed to be helpful for
our rich feature segmentation, which is actually reasonable.
Our segmentation is not purely intensitive based. When the
classifier is trained on biasd images, there is no reason that
they will perform better on less biased image after the bias
field correction compared to the biased ones before that.

To quantively evaluate our bias field estimation and cor-
rection, we use normalized root of mean square error of the
estimated bias field with respect to the ground truth. The
result is shown in Fig. 14. Our proposed method was able
to acheive more accurate bias field correction in all testing
patterns than the baseline. However, both FCM-B and our
approache performed badly in pattern 2, where bias field was
extremly strong in the center of the image, not reflecting the
realistic cases.

V. CONCLUSION

In this project, we replicated fuzzy c-means based bias
field correction method, and showed that the bias field can be
mostly corrected when it is not strong, and improves in average
9% on segmentation accuracy compared to fuzzy c-means
segmentation without bias field correction method. Thus our
results validate our first hypothesis in that the one with bias
field correction method will outperform the one without bias
field correction, but not as high as 15% improvement in
segmentation accuracy as we previously expected. To improve
the performance of bias field correction in cases of strong
bias, we extended the previous fuzzy c-means based bias field
correction with a rich feature based segmentation method,
which provides the prior knowledge on the fuzzy memberships
of each pixel to different tissue types. Our new segmentation
method is based on supervised learning of the appearance
model for different tissue types, and we are able to acheive
above 60% tissue label accuracy even when the bias field
is very strong, which is 51.1% higher than fuzzy c-means
segmentation thus validating our second hypothesis. The bias
field correction benefits from our segmentation method, and

the estimation of the bias field is more accurate than the
fuzzy c-means based method, specifically, the performance
is boosted by 41.7%, thus validating our third hypothesis.
For further exploration of this problem, a more regularization
method adaptive to bias field with higher order variation.
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Figure 10. Sample results: tissue labeling and bias field correction.
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